УДК 577. 115.3: 616.36: 615. 225: 616.12 – 005.4

Котловский М. Ю.¹, Якименко А. В.¹, Курдояк Е.В.¹, , Гришанова А.Ю.², Покровский А.А.¹, Оседко А.В.¹, Якимович И.Ю.³, Аксютина Н.В.¹, Котловский Ю.В.¹, Дыгай А. М.⁴

ИЗМЕНЕНИЯ СОДЕРЖАНИЯ ЖИРНЫХ КИСЛОТ В ПЕЧЕНИ КРЫС НА ГИПЕРХОЛЕСТЕРИНОВОЙ ДИЕТЕ ПРИ ПРИЕМЕ ПРЕПАРАТА, СОДЕРЖАЩЕГО ОМЕГА 3 ЖИРНЫЕ КИСЛОТЫ, НА ФОНЕ ТЕРАПИИ ИБС

¹ГБОУ ВПО Красноярский государственный университет им. проф. В.Ф. Войно-Ясенецкого, г. Красноярск ³Институт молекулярной биологии и биофизики СО РАМН, г. Новосибирск ³ГОУ ВПО Сибирский государственный медицинский университет, г. Томск ⁴ГУ НИИ Фармакологии ТНЦ СО РАМН, г. Томск

Резюме. Изучен жирнокислотный состав печени крыс линии Вистар на модели экспериментальной гиперхолестеринемии при терапии ИБС. В качестве терапии животные получали симвагексал, β-блокаторы, препарат, содержащий ω3 ЖК. Было сформировано пять разных групп животных отличающихся разными сочетаниями препаратов. Жирнокислотный состав печени крыс определялся методом газожидкостной хромато-масс-спектрометрии. В ходе эксперимента было установлено, что холестерин, симвастатин и препарат ω3 повышали С18:1 ω9 ЖК и сумму ω9. Симвастатин увеличивал С16:0 ЖК и процентное значение суммы четных ЖК. Холестерин положительно повлиял на абсолютное значение С16:0 ЖК и сумму НасЖК. Препарат ω3 увеличивал абсолютное содержание С16:0 и процентное значение суммы НасЖК. В свою очередь использование бисопролола и ацетилсалициловой кислоты приводило к снижению содержания С18:1, С16:0 ЖК, суммы ω9 ЖК и значение суммы данных НасЖК. Полученные данные говорят о изменении транспорта ЖК в ЛП.

Ключевые слова: симвастатин, жирные кислоты, холестерин, ацетилсалициловая кислота, ω 3 препарат, β -блокаторы.

Kotlovskiy M.Y.¹, Yakimenko A.V.¹, Kurdoyak E. V.¹, Grishanova A.U.², Pokrovskiy A A.¹, Osedko A.V.¹, Yakimovich I.Y.³, Aksyutina N.V.¹, Kotlovskiy Y.V.¹, Dygai A.M.⁴

CHANGES OF FATTY ACID CONTENT OF LIVER IN RATS ON HYPERCHOLESTEROL DIET WHILE TAKING THE DRUG, INCLUDE OMEGA-3 FATTY ACIDS AT STANDARD ISCHEMIC HEART DISEASE THERAPY

Summary. It was studied the fatty acid composition of the liver of Wistar rats on the experimental model of hypercholesterolemia in the therapy of IHD. The animals received a therapy with simvastatin, β -blockers, drug of ω -3 fatty acids. It was formed five different groups of animals distinguished by different combinations of drugs. Fatty acid composition of rat liver was determined by gas-liquid chromatography-mass spectrometry. During the experiment, it was found that cholesterol, simvastatin and drug of ω -3 fatty acids increased C18:1 ω -9 fatty acid and sum of ω -9 fatty acids. Simvastatin increased the C16:0 fatty acid and the percentage value of the sum of fatty acids with an even number of carbon atoms. Cholesterol had a positive effect on the absolute value of C16:0 fatty acid and the sum of saturated fatty acids. Drug of ω -3 fatty acids increased the absolute content of C16:0 fatty acid and the percentage value of the sum of saturated fatty acids. In turn, the use of bisoprolol and acetylsalicylic acid leads to a decrease in the content of C18:1 fatty acid, C16:0 fatty acid, sum of ω -9 fatty acids and value of the sum of presented saturated fatty acids. The data suggest a change in the fatty acid transport by lipoproteins.

Key words: simvastatin, fatty acids, cholesterol, acetylsalicylic acid, drug of ω -3 fatty acids, β -blockers.

Введение. В настоящее время используются различные модели атеросклеротического поражения стенки сосудов. Они могут быть вызваны самыми различными факторами: механическими, химическими, иммунологическими, а также диетой [9]. Модели на животных позволяют создавать экспериментальную гиперхолестеринемию и дают возможность управлять этим процессом. Наиболее популярной является модель экспериментальной гиперхолестеринемии, вызванной путем скармливания животным продуктов с избыточным количеством холестерина [2, 4, 11]. В случаях ИБС, а также при первичной и вторичной профилактике ате-

росклеротических поражений сердечно-сосудистой системы свою высокую эффективность во многих исследованиях показали статины [12]. Из литературы известно, что данные препараты оказывают влияние на спектр ЖК, воздействуя на содержание холестерина в липопротеидах, что приводит к изменению их конформации и активному поглощению клетками [8, 10]. Одной из задач терапии ИБС является оптимизация энергообеспечения кардиомиоцитов, поэтому также проводится сопутствующая терапия β-блокаторами и дезагрегантами. Действие β-блокаторов направлено на уменьшение потребления энергии кардиомиоцитами. Однако эффект данных препаратов на спектр ЖК, основной субстрат энергии кардиомиоцитов, плохо изучен. В то же время для корректировки спектра ненасыщенных ЖК, в благоприятную с терапевтической целью сторону, на рынке предлагаются препараты, содержащие ω3 ЖК.

Известно, что печени отводится ведущая роль в обмене жирных кислот в организме. Данный орган участвует в синтезе желчных кислот, белков-липаз, белков-транспортеров жирных кислот, аккумулирует и модифицирует ЖК, поступившие с пищей, самостоятельно синтезирует ЖК. Содержание ЖК в ткани печени является отражением данных процессов [1].

Одной из наиболее важных функций ЖК является энергообеспечение клеток [3]. В этом процессе преимущественно участвуют насыщенные и мононенасыщенные ЖК, из которых основными являются пальмитиновая (С16:0) и олеиновая (С18:1) [6]. При этом олеиновая кислота является метаболически более выгодной для организма [7]. Данные жирные кислоты поступают с пищей, но могут образовываться и в самой печении.

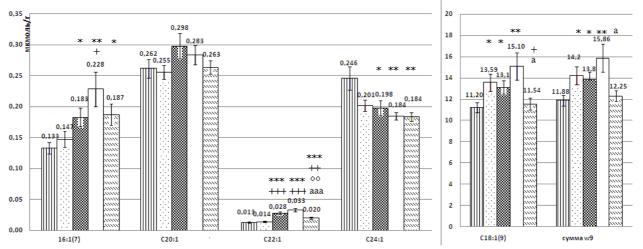
Целью данного исследования явилось изучение показателей жирных кислот, используемых для энергетического обеспечения клеток в печени у крыс при терапии ИБС в модели экспериментальной гиперхолестеринемии.

Материалы и методы исследования. В исследовании участвовали 100 двухмесячных самцов крыс (линия Wistar) массой 200 г. Для проведения эксперимента методом случайной выборки формировались 5 групп по 20 крыс в каждой. На протяжении 2 месяцев эксперимента крысы содержались в стандартных условиях вивария.

Представители первой группы, получали обычное питание и являлись группой контроля. Крысам четырех оставшихся групп в течение двух месяцев в питание добавлялся холестерин (Sigma, Германия) в дозировке 2,5 г/сут. Представители третьей, четвертой и пятой групп после первого месяца эксперимента начинали получать сопутствующую терапию, состоящую из β-блокатора (бисопролол) (0,02 мг/сут) и дезагреганта (ацетилсалициловая кислота) (0,2 мг/сут). Дозировка всех препаратов рассчитывалась исходя из пересчета дневной дозировки, принимаемой пациентом весом 80 кг, пересчитанной на вес крысы принятый за 200г. Дополнительно к этому крысы третьей группы получали симвастатин (0,1мг/сут). В четвертой группе данный препарат в аналогичной дозировке сочетался с препаратом, содержащим ω3 ЖК (3,6 мг/сут). В пятой группе крысы получали, как и в предыдущей группе, препарат, содержащий ω3 ЖК, но без статина.

Через два месяца эксперимента, после 12-часового голодания, производился забой животных методом декапитации с применением фторотана в качестве наркоза.

Производилось определение метиловых эфиров жирных кислот ткани печени. Их состав определялся методом газожидкостной хромато-масс-спектрометрии. Метиловые эфиры ЖК, получали методом кислого метанолиза [5, 13].


Для разделения использовалась колонка HP-5MS длиной 30 м, диаметром 0,25 мм (фирма Agilent Technologies, США). Идентификация осуществлялась использованием сопоставления масс-спектрометрических отпечатков анализируемой пробы с отпечатками, содержащимися в электронных библиотеках «NIST MS Search 2.0» и «AMDIS Analysis» и временем удерживания метиловых эфиров стандартов ЖК. Содержание ЖК рассчитывалось с помощью компьютерной программы «MSD ChemStation D.02.00.275» по методу нормализации пиков, относительно внутреннего стандарта и выражалось в абсолютных (мкмоль/мг) и относительных (%) величинах.

В нашей работе мы определяли сумму мононенасыщенных ЖК которая включала в себя: сумму НЖК семейства ω -7, ω -9 (цис-7-гексадеценовая (C16:1), олеиновая (C18:1), гон-

доиновая (C20:1), эруковая (22:1), нервоновая (C24:1)). Помимо этого мы определяли суммарное содержание НасЖК с четным числом атомов углерода в углеводородном скелете: состоящее из суммы НасЖК с четным (миристиновой (C14:0), пальмитиновой (C16:0), стеариновой (C18:0), арахиновой (C20:0), бегеновой (C22:0), лигноцериновой (C24:0)).

Статистический анализ данных проводился при использовании пакета прикладных программ SPSS 13.0 for Windows. Выборка соответствовала нормальному распределению, что проверялось по критериям Колмогорова-Смирнова и Шапиро-Вилкоксона. Сравнение проводилось между всеми пятью группами, при этом каждая группа сравнивалась с каждой. Статистическая значимость различий для каждой выборок определяли по t-критерию Стьюдента, с применением поправки Бонферрони. Статистически значимыми считали различия при р≤0,05. По результатам сравнения производилось ранжирование выборок с последующим определением направления и силы воздействия препаратов путем сравнения положения каждой группы в ранге с положением остальных выборок.

Результаты исследования и их обсуждение. Обращая внимание на абсолютное содержания ω9 ЖК, мы видим, что уровень цис-7-гексадеценовой (С16:1) ЖК в группах 3 и 5 был выше, чем в группе 1, а в группе 4 выше, чем в группах 1 и 2 (рис. 3). Уровень олеиновой (С18:1) ЖК в группе 3 превысил таковой в группе 1, а в группах 2 и 4 был выше, чем в группах 1 и 5. Содержание эруковой (С22:1) ЖК в группах 3 и 4 было выше, чем в группе 1 и 2, а в группе 5 выше, чем во всех группах. Значение содержания нервоновой (С24:1) ЖК в группе 1 было выше, чем в группах 3, 4 и 5. Говоря об абсолютном значении суммы ω9 ЖК, мы видим, что данный показатель в группах 2 и 3 был выше, чем в группе 1, а в группе 4 был больше чем в группах 1 и 5.

Примечание: (здесь и далее на рисунках, таблицах и схемах): символами обозначена статистическая значимость различий между группами: *- отличия от контроля, + - отличия от группы 2, о - отличия от группы 3, а - отличия от группы 4, *** - $p \le 0.01$, ** - $p \le 0.05$.

Рис. 1. Абсолютное содержание ω9 ЖК ткани печени крыс в группах сравнения.

Рассматривая процентное содержание ω9 ЖК, мы видим, что уровень цис-7-гексадеценовой (С16:1) ЖК в группах 3, 4 и 5 был выше, чем в группах 1 и 2 (рис. 4). Содержание олеиновой (С18:1) ЖК в группе 4 было выше, чем в группе 1. Уровень гондоиновой (С20:1) ЖК в группе 5 превысил таковой в группах 2, 3 и 4. Говоря о эруковой (С22:1) ЖК, мы видим, что уровень данного показателя в группах 3 и 4 был выше, чем в группах 1 и 2, а в группе 5 был выше, чем в группах 1, 2 и 4. Рассматривая содержание нервоновой (С24:1) ЖК мы видим, что значение содержания данной ЖК в группе 2 было больше чем в группе 4, а в группе 1 больше чем во всех остальных. Значение процентной суммы ω9ЖК в группе 4 было выше, чем в группе 1.

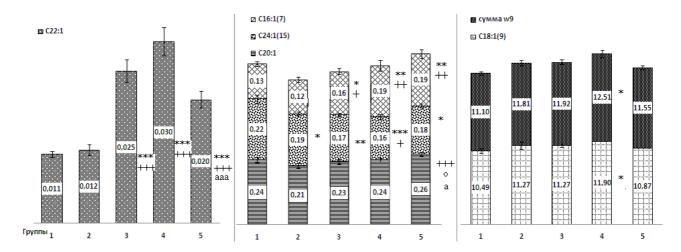


Рис. 2. Относительное содержание ω9 ЖК ткани печени крыс в группах сравнения.

Таким образом, мы видим, что холестерин положительно повлиял на абсолютное и относительное (табл. 1) содержание олеиновой (С18:1) ЖК, как и значение суммы ω9 ЖК. Положительным был его эффект на абсолютное содержание цис-7-гексадеценовой (С16:1) ЖК. В то же время отмечалось отрицательное влияние на абсолютное и относительное содержание нервоновой (С24:1) ЖК и относительное содержание гондоиновой (С20:1) ЖК.

Таблица 1. Эффекты препаратов на абсолютное и относительное содержание ЖК семейства ω9 в тканях печени крыс

	Название препарата				
Показатель	холестерин	симвастатин	ω3- содержа-	сопутствующая	
			щий препарат	терапия	
С16:1(7), мкмоль/г	1	1	1	0	
С18:1(9), мкмоль/г	3	2	1	-3	
С20:1, мкмоль/г	0	0	0	0	
С22:1, мкмоль/г	0	1	0	1	
С24:1(15), мкмоль/г	-1	0	0	-1	
Сумма ω9, мкмоль/г	2	2	1	-2	
C16:1(7), %	0	0	0	1	
C18:1(9), %	1	1	1	-1	
C20:1, %	-1	-1	0	3	
C22:1, %	0	2	1	0	
C24:1(15), %	-1	-1	-1	0	
Сумма ω9, %	1	1	1	-1	

Примечание: здесь и далее в таблицах: 0 – отсутствие влияние, 1 – положительное влияние не выраженного характера, 2 – положительное влияние выраженного характера, 3 – положительное влияние максимальной силы, - 1 - отрицательное влияние не выраженного характера, - 2 – отрицательное влияние выраженного характера, - 3 – отрицательное влияние максимальной силы.

Говоря о влиянии симвастатина, мы видим положительный эффект на абсолютное и относительное содержание олеиновой (С18:1), эруковой (С22:1) ЖК, значение суммы ω9 ЖК. Отрицательным был эффект препарата на относительное содержание гондоиновой (С20:1) ЖК и нервоновой (С24:1) ЖК. Препарат ω3 ЖК положительно повлиял на абсолютное и относительное содержание олеиновой (С18:1) ЖК, значение суммы ω9ЖК и только абсолютное содержание цис-7-гексадеценовой (С16:1) ЖК, процентное содержание эруковой (С22:1) ЖК. Отрицательным было его влияние на нервоновую (С24:1) ЖК.

Рассматривая эффект препаратов сопутствующей терапии, мы видим, что отрицательным был их эффект на абсолютное и относительное содержание олеиновой (C18:1) ЖК, значение суммы ω 9 ЖК, абсолютное содержание нервоновой (C24:1) ЖК. В то же время, был

отмечен их положительный эффект на абсолютное содержание эруковой (С22:1) ЖК и относительное содержание цис-7-гексадеценовой (С16:1), гондоиновой (С20:1) ЖК.

Изменение содержания отдельных НЖК отразилось на их интегративных показателях. Говоря об абсолютном значении МНЖК, мы видим, что данный показатель в группах 3, 4 и 5 был достоверно выше, чем в группах 1 и 2. Рассматривая процентное значение суммы МНЖК, мы видим, что значение данного показателя в группах 3 и 4 превысило таковое в группах 1 и 2, а в группе 5 он было больше, чем в группах 1, 2 и 3.

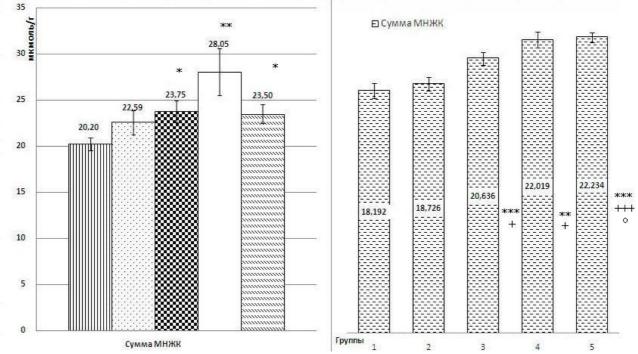


Рис. 3. Абсолютное и относительное содержание МНЖК ткани печени крыс в группах сравнения.

Таким образом, говоря о сумме МНЖК, мы видим, что холестерин положительно повлиял на ее абсолютное значение (табл. 2). Симвастатин же проявил отрицательный эффект в отношении ее процентного значения. Влияние препарата ω3 ЖК было положительным, на процентное значение данного показателя. В то же время препараты сопутствующей терапии повлияли положительно как на абсолютное, так и процентное значение данного показателя.

Таблица 2 Эффекты препаратов на абсолютное и относительное содержание МНЖК в тканях печени крыс

	Название препарата				
Показатель	холестерин	симвастатин	ω3- содержащий	сопутствующая	
			препарат	терапия	
Сумма МНЖК, мкмоль/г	1	0	0	1	
Сумма МНЖК, %	0	-1	1	2	

Рассматривая абсолютное содержание НасЖК с четным числом атомов углерода, мы видим, что содержание пальмитиновой (С16:0) ЖК в группе 2 было больше чем в группе 1, а в группе 4 больше чем во всех группах. Уровень стеариновой (С18:0) ЖК в группах 3 и 4 превысил таковой в группе 5, а в группах 1 и 2 был больше, чем в группах 3, 4 и 5. Содержание арахиновой (С20:0) ЖК в группах 1 и 2 и 5 было больше чем в группе 4. Говоря о содержании бегеновой (С22:0) ЖК, мы видим, что данный показатель в группе 3 и 4 был больше чем в группе 5. В то же время, данный показатель в группах 1 и 2 превысил таковой в группах 4 и 5. Рассматривая лигноцериновую (С24:0) ЖК, мы наблюдаем, что данный показатель в группе 3 и 4 был больше чем в группе 5, в группе 2 превысил таковой в группах 4 и 5, а в группе 1 был больше, чем группах 3, 4 и 5.



Рис. 4. Абсолютное содержание насыщенных четных ЖК ткани печени крыс в группах сравнения.

Говоря о процентном содержании Нас ЖК с четным числом атомов углерода в углеводородном скелете, мы видим, что содержание пальмитиновой (С16:0) ЖК в группах 1, 2 и 4 было выше, чем в группах 3 и 5. Содержание стеариновой (С18:0) ЖК в группах 1 и 2 было больше чем в группах 3, 4 и 5. Уровень арахиновой (С20:0) ЖК в группах 2 и 5 превысил таковой в группе 4, а в группе 1 был вше, чем в группах 3 и 4. Рассматривая процентное содержание бегеновой (С22:0) ЖК мы видим, что оно в группе 3 было больше, чем в группе 5, в группе 2 выше, чем в группах 4 и 5, а в группе 1 выше, чем во всех группах. Относительно содержания лигноцериновой (С24:0) ЖК было отмечено, что данный показатель в группе 2 был выше, чем в группах 4 и 5, а в группе 1 выше, чем во всех группах.

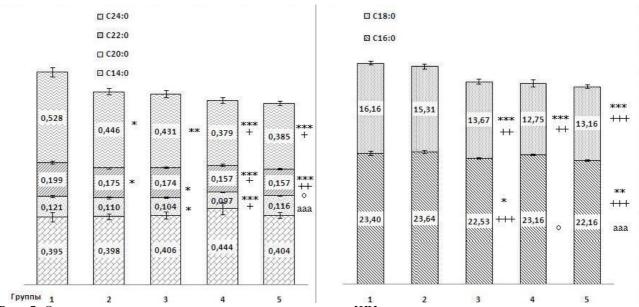
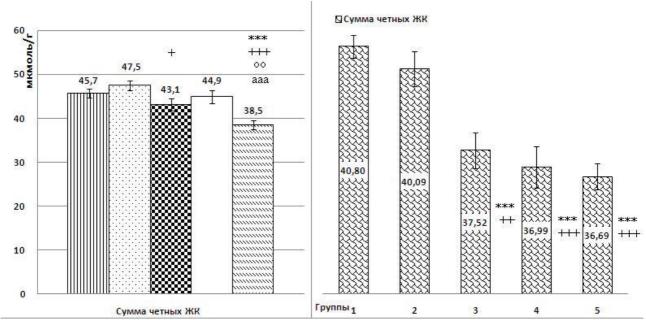


Рис. 5. Относительное содержание насыщенных четных ЖК ткани печени крыс в группах сравнения.

Таким образом, рассматривая изменение содержания НасЖК под воздействием препаратов, мы видим, что холестерин отрицательно повлиял на абсолютное и относительное (табл. 3) содержание лигноцериновой (C24:0) ЖК, процентное значение, арахиновой (C20:0), бегеновой (C22:0) ЖК. Положительным было его влияние на абсолютное содержание пальмитиновой (C16:0) ЖК. Говоря о влияние симвастатина, мы видим его положительный эффект на абсолютное и относительное содержание пальмитиновой (C16:0), бегеновой (C22:0) ЖК и только абсолютное содержание стеариновой (C18:0), лигноцериновой (C24:0) ЖК. Отрицательным было влияние препарата на абсолютное и относительное содержание арахиновой (C20:0) ЖК.

Таблица 3 Эффекты препаратов на абсолютное и относительное содержание ЖК с четным числом атомов углерода в тканях печени крыс

Показатель	Название препарата				
	холестерин	симвастатин	ω3- содержа- щий препарат	сопутствующая терапия	
С14:0, мкмоль/г	0	0	0	0	
С16:0, мкмоль/г	2	2	0	-3	
С18:0, мкмоль/г	0	0	0	0	
С20:0, мкмоль/г	0	0	0	0	
С22:0, мкмоль/г	-2	0	1	1	
С24:0, мкмоль/г	-2	1	1	0	
C14:0, %	0	0	0	0	
C16:0, %	0	1	1	-2	
C18:0, %	0	0	0	-1	
C20:0, %	-1	-2	-1	1	
C22:0, %	-1	1	-1	-2	
C24:0, %	-1	0	-1	-1	


Рассматривая влияние препарата $\omega 3$ ЖК, мы видим отрицательный эффект на абсолютное и относительное содержание арахиновой (C20:0), бегеновой (C22:0), лигноцериновой (C24:0) ЖК. В то же время эффект на процентное содержание пальмитиновой (C16:0) ЖК был положительным.

Препараты сопутствующей терапии отрицательно повлияли на абсолютное и относительное содержание пальмитиновой (C16:0), стеариновой (C18:0), бегеновой (C22:0), лигноцериновой (C24:0) ЖК. Положительным было влияние препаратов на абсолютное и относительное содержание арахиновой (C20:0).

Изменение отдельных НасЖК отражалось на их интегративных показателях.

Рассматривая абсолютное значение суммы НасЖК с четным числом атомов углерода, мы видим, что значение данного показателя в группах 1, 3 и 4 было выше, чем в группе 5, а в группе 2 превысило таковое в группах 3 и 5.

Говоря о процентном значении суммы НасЖК с четным числом атомов углерода, мы видим, что значение данного показателя в группах 1 и 2 было выше, чем в группах 3, 4 и 5.

Рис. 6. Абсолютное и процентное суммарное содержание НасЖК с четным числом атомов углерода в ткани печени крыс в группах сравнения.

Таким образом, мы видим, что холестерин, симвастатин и препарат ω3 ЖК положительно повлияли на абсолютное значение суммы НасЖК с четным числом атомов углерода (табл. 4). Влияние препаратов сопутствующей терапии было отрицательным на абсолютное и относительное значение данного показателя.

Таблица 4 Эффекты препаратов на абсолютное и относительное значение суммы НасЖК с четным числом атомов углерода МНЖК в тканях печени крыс

	Название препарата			
Показатель	холесте-	симваста-	ω3- содержа-	сопутствую-
	рин	тин	щий препарат	щая терапия
Сумма четных НасЖК, мкмоль/г	1	2	1	-4
Сумма четных НасЖК, %	0	0	0	-1

Вывод. В ходе эксперимента было установлено, что холестерин, симвастатин и препарат ω3 повысили абсолютное и процентное содержание в печени как С18:1 ω9 ЖК так и суммы ω9. В то же время их влияние на общую сумму МНЖК было разнонаправленным. Симвастатин увеличивал абсолютное и относительное содержание С16:0 в ткани печени. Было отмечено положительное влияние на процентное значение суммы НасЖК с четным числом атомов углерода. Холестерин положительно повлиял на абсолютное значение как С16:0, так и абсолютное значение суммы НасЖК. Препарат ω3 увеличивал абсолютное содержание С16:0 и процентное значение суммы НасЖК. В свою очередь использование бисопролола и ацетилсалициловой кислоты приводило к снижению абсолютного и относительного содержания С18:1 ЖК, так и суммы ω9 в ткани печени. Снижалось абсолютное и относительное содержание С16:0 и значение суммы данных НасЖК. Данные изменения происходили в связи с нарушением образования ЛПОНП и усилению захвата ЛПНП из плазмы.

Литература

1. Березов Т.Т. Биологическая химия: учеб., 3-е изд., доп и перераб. / Т.Т. Березов, Б.Ф. Коровкин. – М.: Медицина, 1998. – 704 с.

- 2. Клинникова М.Г. Ремоделирование миокарда крыс при хронической дислипидемии и введении верапамила / М.Г. Клинникова, Е.И. Южик, В.И. Пичигин, Е.Л. Лушникова // Бюллетень экспериментальной биологии. 2014. Т. 158, № 7. С. 108—115.
- 3. Ленинджер А. Биохимия. Молекулярные основы структуры и функций клетки: учеб. М.: Мир, 1974. 956 с.
- 4. Структурные реакции миокарда и липидный спектр сыворотки крови при моделировании гиперхолестеринемии и гипотиреоза / Л.М. Непомнящих [и др.] // Бюллетень экспериментальной биологии. 2013. Т. 155, № 5. С. 647–652.
- 5. Струкова Е.Г. Химико-аналитическое изучение микробных сообществ с использованием хромато-масс-спектрометрии микробных маркеров, дис. канд. хим. наук: 02.00.02: защищена 9.02.11. Красноярск, 2011. 184 с.
- 6. Титов В. Н. Высокое содержание пальмитиновой жирной кислоты в пище основная причина повышения уровня холестерина липопротеинов низкой плотности и атероматоза интимы артерий // Клиническая лабораторная диагностика. 2013. –№ 3. С. 3-10.
- 7. Титов В. Н. Олеиновая жирная кислота. Олеиновые, линолевые и линоленовые липопротеины низкой плотности // Клиническая лабораторная диагностика. -2006. -№ 6. -ℂ. 3-13.
- 8. Титов В.Н. Статины, холестерин, жирные кислоты и сахарный диабет. Научный диалог // Естествознание. Экология. Науки о земле. 2013. Т. 3, № 15. С. 148–183.
- 9. Drew A.F. Animal models of diet-induced atherosclerosis // Methods Molec. Med. 2001. Vol. 52. P. 1–6.
- 10. Effects of Diet and Simvastatin on Fatty Acid Composition in Hypercholesterolemic Men A Randomized Controlled Trial / A. Jula [et al.] // Arteriosclerosis Thrombosis and Vascular Biology. 2005. P. 1952-1959.
- 11. Getz G.S. Diet and murine atherosclerosis / G.S. Getz, C.A. Reardon // Arteriosclerosis Thrombosis and Vascular Biology. 2006. Vol. 26, № 2. P. 242–249.
- 12. Randomised trial of cholesterol lowering in 4,4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival study (45): Scandinavian Simvastatin Survival study Group // Lancet. 1994. Vol. 344. P.1383-1389.
- 13. Ruggieri S. Separation of the methyl esters of fatty acids by thin layer chromatography // Nature. 1962. Vol. 193. P. 1282-1283.