УДК: 576.32/35

Пушкарёв Б.С., Витковский Ю.А.

КАЛЬЦИЕВЫЕ ИОННЫЕ КАНАЛЫ. ЧАСТЬ І.

ГБОУ ВПО Читинская государственная медицинская академия, г. Чита

Резюме. Статья является обзором литературы по кальциевым ионным каналам биологических мембран, рассматривает молекулярную и фармакологическую классификации кальциевых каналов, а также классификацию потенциал-управляемых каналов для кальция по типу ионного тока Ca^{2+} , затрагивает физиологические функции различных типов Ca^{2+} -каналов.

Ключевые слова: кальциевые каналы, кальциевый ток, классификация кальциевых каналов.

Pushkarev B.S., Vitkovsky Yu.A. CALCIUM CHANNELS. PART 1.

Summary. The paper is literature review of ionic calcium channels of biological membranes. Their molecular and pharmacological classifications, as well as ionic current classification of voltage-gated calcium channels and physiological function of various calcium channels were described.

Keywords: calcium channels, calcium ionic current, classification of calcium channels.

Введение. Ионные каналы — это транспортные интегральные белки, ограничивающие собой водную пору, локализованные в плазмолемме и мембранах органелл клеток, обладающие ионоселективностью и осуществляющие транспорт ионов, поддерживая разность потенциалов между внутренними и внешними сторонами клеточных мембран [7, 8].

Кальциевые каналы избирательно проницаемы для ионов кальция Ca²⁺. Различные клетки тканей человеческого тела содержат в своих мембранах различные ионные каналы для кальция, которые отличаются по скорости своего открытия, механизму активации и инактивации, периоду в котором канал находится в открытом состоянии. Причиной разнообразия кальциевых каналов в клетках с различным фенотипом являются вариации комбинаций, кодирующих эти структуры генов и действие факторов, определяющих экспрессию ионных каналов на биомембранах [6].

Ионные каналы располагаются не только в клеточной мембране, но и в мембранах органелл клетки. Кальциевые токи вносят значимый вклад в изменение биоэлектрического потенциала клеток. Роль кальциевых ионов в генерации потенциала действия (ПД) неодинакова даже в различных участках мембраны нейрона, а именно - в мембране тела и в мембране его аксонов. В экспериментах на нейронах моллюсков и млекопитающих показано, что в аксональных отростках полностью исчезает возбудимость в условиях безнатриевой среды, а ионный ток блокируется специфическим блокатором натриевых каналов - тетродотоксином (ТТХ), что говорит о преимущественно натрий-калиевом механизме генерации ПД в данном участке мембраны [5, 10]. Однако для мембраны тела нейрона роль Са²⁺ в формировании ПД более выражена [5, 34]. Но эта мембрана в участках близких к начальному сегменту аксона участвует в генерации преимущественно натриевых спайков, а удаленных от аксона – кальциевых [2, 5]. Фаза деполяризации ПД возникает за счёт входа ионов натрия или кальция внутрь клетки, что может быть зарегистрировано как соответствующие входящие токи, а фаза реполяризации а также гиперполяризации связаны с выходящим током ионов калия [2, 3, 4, 5].

Кальциевые каналы различных типов обнаружены в тканях: мозга, почек, ЦНС, ПНС, сердца, сетчатки, поджелудочной железы, печени, скелетных мышц и др. [6] Что имеет связь со специфичностью функций каждой из тканей.

Кальциевые каналы и их классификация

Физиолог К.Н. Мельников отмечает существование трёх способов классификации кальциевых каналов, которые иллюстрируют и этапы развития знаний об этих каналах [6]. 1) Молекулярная классификация разработана Е.А. Ertel и соавторами [22]. Согласно данной классификации кальциевые каналы подразделены следующим образом:

- 1. Потенциал управляемые Ca²⁺каналы;
- 2. Другие Ca²⁺каналы (лиганд-управляемые и другие внутриклеточные);
- 3. Ca²⁺сенсоры. [22]

В различных тканях представлены Ca^{2+} - каналы, обладающие пептидной специфичностью [6].

По данным К.Н. Мельникова потенциал управляемые Ca^{2+} - каналы содержат 4 -5 субъединиц, относящихся к группе протеинов. Среди α -субъединиц размером 160–273 kD выделяют 10 подтипов [6]. На основании этого предложена следующая классификация (табл.1).

Классификация потенциал управляемых Ca²⁺ - каналов по разнообразию q₁-субъединицы

Таблица 1

по разнообразию ил-субъединицы							
Подтип α_1	Кодирующий ген	Тип канала		Локализация			
α_{1A}	CACNA1A	P/Q	Ca _v 2.1	Мозг, мотонейроны, почки			
$lpha_{1\mathrm{B}}$	CACNA1B	N	$Ca_v2.2$	ЦНС, ПНС			
$\alpha_{1\mathrm{C}}$	CACNA1C	L	Ca _v 1.2	Сердце, фибробласты, легкие, гладкая мышца			
α_{1D}	CACNA1D	L	Ca _v 1.3	Мозг, поджелудочная железа, нейроэндокринная ткань			
$lpha_{1\mathrm{E}}$	CACNA1E	R	Ca _v 2.3	Мозг, мышца (нейромышечный синапс)			
$lpha_{1\mathrm{F}}$	CACNA1F		Ca _v 1.4	Сетчатка			
α_{1G}	CACNA1G	T	Ca _v 3.1	Мозг			
$lpha_{1 ext{H}}$	CACNA1H	T	Ca _v 3.2	Почки, печень			
$\alpha_{1\mathrm{I}}$	CACNA1I	T	Ca _v 3.3	Мозг			
$\alpha_{1\mathrm{S}}$	CACNA1S	L	Ca _v 1.1	Скелетная мышца			

Специфичность строения субъединиц потенциал-управляемых Ca²⁺-каналов генетически обусловлена [1]. К лиганд-управляемым Са²⁺-каналам группы других Са²⁺-каналов относят Ca^{2+} -транспортную $AT\Phi$ -азу, обеспечивающие выход кальция Ca^{2+} -рианодиновые рецепторы (RYR), а также прочие интрацеллюлярные Ca²⁺-каналы. Среди Ca²⁺-транспортных АТФ-аз относят 4 вида. Они являются гомотетрамерными комплексами, которые содержат 6 трансмембранных сегментов. АТР2А1 обнаружены в эдоплазматическом или саркоплазматическом ретикулуме и принимают участие в быстрой констрикции поперечно-полосатой мускулатуры, а ATP2A2 – в медленной констрикции. Они имеют две изоформы: SERCA2a, локализованная в кардиомиоцитах и поперечно - полосатой мускулатуре; SERCA2b расположенная в немышечных тканях и гладких мышцах. Иные виды АТР2В1, АТР2В2 и АТР2В4 выявлены в плазмолемме и активируют каналы мембран, расположенных внутри клетки. Лиганд-управляемым каналы выходящего кальциевого тока, связанные с рианодиновым рецептором (RYR) срабатывают после активации дигидропиридинчувствительных соматических каналов для Ca^{2+} , что обеспечивает усиление сигнала. Активаторы: рианодин, кофеин, Ca^{2+} ; первичный посредник – циклическая АДФ-рибоза (цАДФР), а вторичный – цАДФР- Ca^{2+} кальмодулин. Рианодиновых рецепторы имеют подтипы RYR1 – расположен в саркоплазматическом ретикулуме и обеспечивают приток ионов Ca²⁺, требующихся в процессах возбуждения и сокращения скелетных мышц. Регулятором их работы является протеинкиназа А (PKA). RYR2 обнаруживаются в сердце, их дисфункция может стать причиной стрессиндуцированного полиморфизма и вентрикулярной тахикардии. RYR3-рецепторы выявлены в мозге. Другой подтип лиганд-управляемых каналов – рецептор к инозитол-1,4,5трифосфату (IP3), подобный по строению рианодиновым рецепторам. IP3-рецептор приходит в состояние активации под влиянием увеличенной внутриклеточной концентрации инозитол-1,4,5-трифосфата, что в последствии приводит к высвобождению Ca²⁺ из его внутриклеточных запасов после стимуляции рецепторов на поверхности клетки. Располагаются в мембранах эндоплазматического ретикулума клеток мозга имеющих функцию осцилляции сигнала. К другим внутриклеточным Са²⁺-каналам относятся никотинамидаденин-динуклеотидфосфатный рецептор (НАДФ) и сфинголипидный рецептор (EDG1). НАДФ-рецепторы являются сигнальным триггером, блокируются высоким содержанием НАДФ, а низким — активируются, при этом из тапсигаргин-нечувствительных запасов высвобождается ${\rm Ca}^{2^+}$. Сигнальной молекулой для них является циклическая АДФ-рибоза. Сфинголипидный рецептор чувствителен к продуктам сфинголипидного пути преобразования липидов, вторичным посредником является, вероятно, сфингозин-1-фосфат или сфингозилфосфорилхолин-5.

Молекулярная классификация кальциевых каналов также включает группу Ca²⁺-сенсоров объединяющую в себе сенсоры типа A, экспрессирующиеся в фоторецепторных клетках, модулирующиеся визинином, рековерином, и S-модулином и типа B, встречающиеся в нейронах. К B типу относится нейрональный кальциевый сенсор-1 (NCS1), ассоциированный с секреторными гранулами.

 α 1-субъединицы потенциал-управляемых кальциевых каналов может кодироваться десятью различными генами. Каждый из этих генов может кодировать по крайней мере 18 различных каналов, которые и были обнаружены в нервной системе [13, 21, 31]. β -субъединица закодирована четырьмя генами 1, 2, 3, и 4. Каждый из генов может экспрессировать восемь различных субъединиц, которые также были выявлены в мозге [18, 26]. Субъединицы в различных комбинациях могут сформировать сотни вариаций каналов для α -

Кальциевые каналы имеют разнообразную локализацию в различных тканях, а также в мембранах отдельных частей клеток. Обнаруживаемые комбинации тех или иных типов Са²⁺-каналов, вероятно, определяется физиологическим предназначением. Например, в сетчатке крыс и в некоторых эндокринных клетках [22] L-тип образует каналы контроля секреции [23], а на терминалях двигательных нервов, иннервирующих скелетные и гладкие мышцы, описаны только кальциевые каналы N-типа, управляющие процессами нейротрансмиссии [15, 16, 28]. В ЦНС крысы, в коре мозга, среднем мозге, мозжечке, нейрогипофизе, гиппокампе, стволе мозга, спинном мозге выявлено несколько типов Ca²⁺-каналов. Чувствительные нейроны спинного мозга содержат, в основном, N-тип, но также в них расположены L- и Р-тип кальциевых каналов [20]. В нейрогипофизе выявлены L, N или N-подобные и Р/Qканалы [29, 33]. В мозжечке доминирует Р-тип каналов, вклад N-типа менее выражен, а каналы L-типа отсутствуют и т.п. [26, 30]. В высвобождение нейромедиаторов в различных типах нейронов среднем мозга включены многие Ca^{2+} - каналы [32]. При высвобождении GABA преобладает вклад N-типа каналов при небольшом участии L-типа [19], допамина – равен вклад N, L, и P/Q [27]. В модуляции соответствующих рецепторов АТФ и аденозином участвуют N- и L-каналы [24]. Модуляция Ca²⁺-каналов в нервных терминалиях значимо как механизм регуляции высвобождения медиатора. Установлено большое количество механизмов модуляции Ca²⁺-каналов [13]. Она может осуществляться нейромедиаторами, высвобожденными тем же самым нервным окончанием через обратное действие на ауторецепторы продуктов разложения выделенного медиатора; медиаторами, высвобожденными из других нервных терминалий; гормонами, выделяемыми в интерстициальную жидкость; антителами, фармакологическими препаратами и воздействием различных физических факторов среды. Некоторые из модулирующих воздействий могут быть вследствие прямого влияния на ионные каналы в нервных окончаниях [11], тогда как другие осуществляются через действие вторичных посредников, G-белков.

Большинство регулирующих воздействий на Ca²⁺-каналы пресинаптических мембран изменяет вероятность открытия этих каналов и обеспечивает частотную модуляцию синаптической передачи [14]. Многочисленные болезни и патофизиологические состояния в организме могут быть ассоциированы с генетическими нарушениями и экспрессией неполноценных соответствующих субъединиц тех или иных типов Ca²⁺-каналов [17]. Также, заболевания могут быть обусловлены физиологическими нарушениями в работе каналов, а также патогенными внешними воздействиями. На современном этапе существуют некоторые способы фармакологической коррекции при патологии ионных каналов, но пока разнообразие высокоспецифичных средств ограничено [5, 6].

К.Н. Мельников [5, 6] приводит следующие классификации кальциевых каналов: 1) по потенциал-управляемости

- 1. Низкопороговые каналы (low voltage-activated (LVA))
- 2. Высокопороговые каналы (high voltage-activated HVA).
- 2) фармакологическую классификацию (табл. 2).
 - 1. Каналы P/Q типа
 - 2. Каналы N типа (от «neither long nor transient» ни L, ни T)
 - 3. Каналы L типа (long lasting)
 - 4. Каналы R типа
 - 5. Каналы Т типа (от «transient» преходящий, транзиторный)

Фармакологическая классификация основана на токах ионов Ca^{2+} . Ca^{2+} -каналы были обнаружены во многих клетках организма человека. Са²⁺-токи, зарегистрированные в различных типах клеток, имеют определенные фармакологические и физиологические свойства. Буквенная номенклатура, предложенная изначально, была создана исходя из кинетики Ca²⁺токов. L-тип (от «long-lasting» – долго длящийся) Ca²⁺-тока требует сильной деполяризации для активации, является долго длящимся и блокируется органическими антагонистами Lтипа Ca²⁺-каналов, такими как дигидропиридины, бензодиазепины, фенилалкиламины и др. Са²⁺-токи L-типа являются основными в эндокринных клетках и миоцитах, где они инициируют констрикцию и секрецию. N-тип (от «neither long nor transient» - ни L, ни T), Р/Q-тип и R-тип кальциевых токов также требуют сильной деполяризации для активации. Они относительно нечувствительны к антагонистам L-типа Ca²⁺-каналов, но блокируются специфическими токсинами из токсинов паука или улитки, являющимися полипептидами. Такие токи преобладают в нервных клетках, где они инициируют нейротрансмиссию в большинстве быстрых синапсов и также опосредуют вход Ca^{2+} в сому клеток и дендриты. Т-тип (от «transient» - преходящий) Ca²⁺-токов активируется слабой деполяризацией, и эти токи мимолетные (преходящие). Они нечувствительны к органическим антагонистам и ядам пауков и змей, которые используются для определения N- и P/Q Ca^{2+} -токов. Ca^{2+} -токи T-типа выражены в большом спектре клеточных типов. где они вовлечены в развитие потенциала действия и важны в клетках и тканях, обладающих ритмической активностью [1].

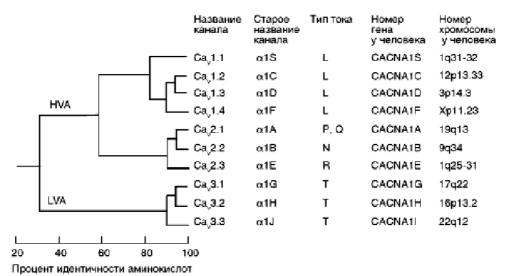
К.Н. Мельников отметил, что с точки зрения молекулярного строения, фармакологические типы потенциал-управляемых Ca^{2+} каналов определяются, прежде всего, типом формирующих их α_1 субъединиц. L-тип (Long lasting) Ca^{2+} каналов формируется субъединицами: α_{1C} , α_{1D} , α_{1F} , α_{1S} , $\alpha_{2\gamma}$, и β_{3A} . Эти каналы блокируются бензодиазепинами, дигидропиридинами, фенилалкиламинами, а также кальцизептином [6]. Активация каналов происходит при сильной деполяризации, инактивация деполяризацией слабая. Расположение каналов различно: α_{1S} — в скелетной мышце; α_{1D} — в мозге (тело нервной клетки и проксимальные дендриты); α_{1C} — в сердечной мышце; α_{1D} — в нейроэндокринных клетках и α_{1F} — в сетчатке. Сопряжение возбуждения и сокращения является общей функцией L-каналов мышц. Каналы $Ca_v 1.1$ (A1S) локализующиеся скелетных мышцах функционируют так же, как сенсор напряжения, а $Ca_v 1.2$ (A1C) выявлены в гладких мышцах и сердце.

N тип Ca^{2+} каналов сформирован α_{1B} , $\alpha_{2\delta}$ и β_{1b} субъединицами, активируются при сильной деполяризации, имеют медленную инактивацию. N-тип каналов сильно и необратимо блокируются σ -конотоксинами MVIIA и GVIA, но нечувствителен к DHP. Эти каналы обнаружены в пресинаптических терминалях нейронов. Их структура лишена усубъединицы. Модуляция канала осуществляется неизвестным гомологом протеинкиназось вязанного белка, взаимодействующим с протеинкиназой C (PKC).

Р-тип Ca^{2+} каналов образован из α_{1A} , $\alpha_{2\delta}$ и β_{4a} субъединиц, активируются при сильной деполяризации, инактивируются медленно. Блокируются ядом паука (Funnel web spider), ω -конотоксином MVIIC и ω -агатоксином IVA. Каналы нечувствительны к ω -конотоксину GVIA и дигидропиридину. Они локализуются в пресинаптической мембране, высокая концентрация α_{1A} субъединицы наблюдается в мозжечке, клетках Пуркинье, в нервномышечном соединении, и участвуют в высвобождении трансмиттера.

Q тип Ca^{2+} каналов формируется α_{1A} , $\alpha_{2\delta}$ и β_{4a} субъединицами. Субъединица α_{1A} каналов Q-типа — вариант измененной α_{1A} в P-типе каналов. Активируются каналы при выра-

женной деполяризации, инактивируются медленно. Q-каналы чувствительны к блокированию ω -конотоксином MVIIC более, чем каналы P типа. Располагаются в пирамидных клетках гиппокампа и зернистых клетках мозжечка. Основная функция — высвобождение нейротрансмиттера.


R-тип Ca^{2+} каналов состоит из: α_{1E} ($Ca_v 2.3$), $\alpha_{2\delta}$ и β_{1b} субъединиц, обладает высоким порогом активации, быстро инактивируется изменением биопотенциала, блокируются пептидом из африканского тарантула Hysterocrates gigas — токсином SNX 482. Основная функция каналов — высвобождение трансмиттера и инсулина, локализуются в дендритах пирамидных клеток гиппокампа, зернистых нейронах мозжечка, клетках эндокринной системы.

Т-тип Са²⁺ каналов (транзиторный) так же, как и другие типы каналов, может быть сформирован различными вариантами α_1 -субъединиц. Содержащий в своей структуре α_{1G} субъединицу (Ca_v3.1) он имеет наиболее короткий период восстановления после инактивации, обнаружен в мозге, при этом участвует в генерации в таламокортикальных нейронах остроконечных волнообразных разрядов и пачек импульсов, опосредованных ГАМК Б рецепторами. Канал, сформированный α_{1H} субъединицей (Ca_v3.2), имеет самое медленное восстановление после инактивации, широко распространен в печени и почках, а также в нервной, эндокринной системе и сердце. Он участвует в генерации коротких пачек импульсов, подавление канала опосредовано β2 и у2 субъединицами G-белка. Канал, фц сформированый α_П субъединицей (Ca_v3.3), генерирует LVA токи, способствующие поддержанию электрической активности нейронов, поскольку активируются при слабой деполяризации, близкой к величине потенциала покоя. Они локализуются в нейронах мозга. Такие каналы активируются и инактивируются медленее, чем типичные каналы Т-типа, характеризуются маленькой проводимостью (~8 пСм), что эквивалентно проводимости одиночного канала для ионов Ва²⁺ и Ca²⁺. Активность канала регулируется с помощью рецепторов, связанных с G-белком, блокируются мибефрадилом, ионами никеля (особенно Ca_v3.2), куртоксином – пептидом яда южноафриканского скорпиона Parabuthus transvaalicus. Каналы Т-типа не чувствительны к дигидропиридинам [5].

Таблица 2 Фармакологическая классификация и физиологические функции потенциал-управляемых Ca²⁺-каналов

потенциал			i yiipabanciibix ca	Kananob
Канал	Ток	Локализация	Специфические ан- тогонисты	Клеточные функции
$Ca_v1.1$	L	Скелетная	Дигидропиридины,	Возбуждение-сокращение,
		мышца, поперечные	фенилалкиламин,	СВЯЗЬ
		трубочки	бензодиазеапины	
$Ca_v1.2$	L	Кардиомиоциты, эн-	Дигидропиридины,	Возбуждение-сокращение, связь,
		докринные	фенилалкиламин,	выделение гормонов, регуляция
		клетки, нейроны	бензодиазеапины	транскрипции, синаптическая инте-
				грация
$Ca_v1.3$	L	Эндокринные клетки,	Дигидропиридины,	Выделение гормонов, регуляция
		нейроны,	фенилалкиламин,	транскрипции, синаптическая инте-
		дендриты ретины	бензодиазеапины	грация
Ca _v 1.4	L			Нейротрансмиссия
Ca _v 2.1	P/Q	Нервные терминали,	ω-агатоксин IVA	Нейротрансмиссия
		дендриты		
Ca _v 2.2	N	Нервные терминали,	ω-GTx-GVIA	Нейротрансмиссия
		дендриты		
Ca _v 2.3	R	Нейроны и дендриты	STX-482	Нейротрансмиссия

А.Г. Камкин и И.С. Киселёва предложили филогенетическую классификацию (в ее основе лежат первичные (генетические) последовательности Ca^{2^+} -каналов), которую можно представить в виде филогенетического древа (рис. 1) [1].

Рис. 1. Филогенетическая классификация потенциал-управляемых Ca²⁺-каналов

В заключение приводим обобщённую классификацию кальциевых Ca²⁺ каналов.

- 1)Потенциал-управляемые Са²⁺-каналы
 - Ca_v1.1 L-тип HVA (скелетные мышцы, поперечные трубочки)
 - Ca_v1.2 L-тип HVA (кардиомиоциты, эндокринные клетки, нейроны)
 - Ca_v1.3 L-тип HVA (эндокринные клетки, нейроны, дендриты ретины)
 - Са_v1.4 L-тип HVA (сетчатка)
 - Ca_v2.1 Р/Q-тип HVA (нервные терминали, дендриты)
 - Ca_v2.2 N-тип HVA (нервные терминали, дендриты)
 - Ca_v2.3 R-тип HVA (нейроны и дендриты)
 - Ca_v3.1 Т-тип LVA (нервные терминали, дендриты, кардиомиоциты)
 - Ca_v3.2 Т-тип LVA (нервные терминали, дендриты, кардиомиоциты)
 - Ca_v3.3 Т-тип LVA (нейроны и дендриты)
- 2) Другие Ca²⁺-каналы (лиганд-управляемые и другие внутриклеточные)
 - A) Ca^{2+} -транспортные АТФазы

АТР2А1 (саркоплазматический и эндоплазматический ретикулум скелетных мышц, участвуют в быстром сокращении скелетных мышц).

ATP2A2 (саркоплазматический и эндоплазматический ретикулум скелетных мышц, участвуют в медленном сокращении мышц).

Изоформы: SERCA2a (сердце, скелетные мышцы)

SERCA2b (гладкомышечная ткань, не мышечные ткани)

ATP2B1 ATP2B2 ATP2B4

участвуют в активации каналов внутриклеточных мембран

- Б) Рианодиновые каналы выхода Ca²⁺ (RYR) (усиливают сигнал от соматических дигидропиридин-чувствительных кальциевых каналов) RYR1 (саркоплазматический ретикулум, участвуют в возбуждении и сокращении скелетных мышц)
 - RYR2 (кардиомиоциты)
 - RYR3 (головной мозг)
- В) Инозитол-1,4,5-трифосфатные (IP3) рецепторы (эндоплазматический ретикулум клеток мозга с функцией осцилляции сигнала)
- Γ) НАДФ рецепторы (регулируют высвобождение Ca^{2+} из тапсигаргин-нечувствительных запасов)
- 3) Ca²⁺-сенсоры
 - А) Тип А (экспрессируются в фоторецепторных клетках)
 - В) Тип В (экспрессируются в нейронах)
 - NCS1 (нейрональный кальциевый сенсор-1) (ассоциирован с секреторными гранулами)

Литература

- 1. Камкин А.Г. Атлас по физиологии: учебное пособие: в 2 т. / А.Г. Камкин., И.С. Киселева М.: ГЭОТАР-Медиа, 2013. 1 т. 408 с.
- 2. Костюк П.Г. Кальций и клеточная возбудимость/ П. Г. Костюк. М.: Наука, 1986. 255 с.
- 3. Крутецкая 3.И. Структурно-функциональная организация и механизмы регуляции потенциал зависимых натриевых и кальциевых каналов клеток: учебно-методическое пособие / 3.И. Крутецкая, О.Е. Лебедев СПб, 2000. 37 с.
- 4. Крутецкая З.И. Биофизика мембран: учебное пособие / З.И. Крутецкая, А.В. Лонский СПб, 1994. 288 с.
- 5. Мельников К.Н. Кальциевые каналы возбудимых мембран / К.Н. Мельников // Психофармакология и биологическая наркология. 2007. Т.1, №1. С. 28–42.
- 6. Мельников К.Н. Разнообразие и свойства кальциевых каналов возбудимых мембран / К.Н. Мельников // Психофармакология и биологическая наркология. 2006. №1–2. С.1139–1155.
- 7. Электронная энциклопедия. [Электронный ресурс]. Режим доступа: http://kineziolog.bodhy.ru/ content/ionnye-kanaly-membrany (дата обращения: 05.06.2015).
- 8. Электронная энциклопедия. [Электронный ресурс]. Режим доступа: https://ru. wikipedia.org/wiki/Ионные_каналы (дата обращения: 05.06.2015).
- 9. A dihydropyridineresistant component in the rat adrenal secretory response to splanchnic nerve stimulation / Looez M.G. [et al.] // J. Neurochem. 1992. Vol. 58, №2. P. 2139–2144.
- 10. Adams D.J. Ionic currents in molluscan soma/ D.J. Adams, S.J. Smith, S.H. Thompson // Annual Review of Neuroscience. 1980. № 3. P. 141–167.
- 11. Akopian A. N. A tetrodotoxin-resistant sodium channel expressed by C-fiber-associated sensory neurons / A.N. Akopian, L. Sivilotti, J.N. Wood // Nature. 1996. Vol. 379, № 6562. P. 257–262
- 12. Allbritton N.L. Localized calcium spikes and propagating calcium waves / N.L. Allbritton, T. Meyer // Cell Calcium. −1993. № 14. P. 691–697.
- 13. Barrett C.F.,Rittenhouse A.R. Modulation of N-type calcium channel activity by G-proteins and protein kinase C / C.F. Barrett,A.R. Rittenhouse //The Journal of General Physiology. − 2000. − Vol. 115, № 3 − P. 277–286.
- 14. Frequency modulation of synaptic transmission: calcium, ion channels and retrograde messengers / Rahamimoff R. [et al.] // Thai Journal of Physiology Science. −1993. Vol. 6, № 4. P. 1–42.
- 15. Friedman D.J. Influence of age on control of norepinephrine releas: Ca^{2+} channels and dopamine D_2 receptor / D.J. Friedman, S.P. Duckless // European Journal of Pharmacology. 1994. Vol. 54. P. 1–9.
- 16. Hamilton B.R. Calcium currents in rat motor nerve terminals / B.R. Hamilton, D.O. Smith // Brain Research. 1992. Vol. 584, №1-2. P. 123–131.
- 17. Ion Channels in Presynaptic Nerve Terminals and Control of Transmitter Release / Meir A. [et al.] // Physiological Reviews. −1999. Vol. 79, № 3. P. 1019–1088
- 18. Isom L.L. Auxiliary subunits of voltage-gated ion channels / L.L. Isom, K.S. De Jongh, W.A. Catterall // Neuron. 1994. Vol. 12, № 6. P. 1183–1194.
- 19. Kipk I.P. Inhibition of striatal GABA release by the adenosine A2a receptor is not mediated by increases in cyclic AMP / I.P. Kipk, P.J. Richardson // Journal of Neurochemistry. 1995. Vol. 64, №2. P. 2801–2809.
- 20. Meyers D.E. Distribution of ionic currents in the soma and growing region of an identified peptidergic neuron in defined culture / D.E. Meyers // Journal Neurophysiology − 1993. − Vol. 69, №2. − P. 406–415.
- 21. Molecular characterization of a neuronal low-voltage-activated T type calcium channel / Perez-Reyes E. [et al.] // Nature. 1998. Vol. 39, № 6670. P. 896–900.

- 22. Nomenclature of voltage-gated calcium channels / Ertel E.A. [et al.] // Neuron. 2000. Vol. 25, №3. P. 533–535.
- 23. Pan Z.H., Lipton S.A. Multiple GABA receptor subtypes mediate inhibition of calcium influx at rat retinal bipolar cell terminals / Z.H. Pan, S.A. Lipton // Journal of Neuroscience. − 1995. − Vol. 15, №4. − P. 2668–2679.
- 24. Pintor J. A novel receptor for diadenosine polyphosphates coupled to calcium increase in rat midbrain synaptosomes / J. Pintor, M.T. Miras-Portugal // Britain Journal of Pharmacology. − 1995. − Vol. 115, № 6. − P. 895–902.
- 25. Rat brain expresses a heterogeneous family of Ca 2.1 channels / Snutch T.P. [et al.] // Proc Natl Acad Sci USA. 1990. Vol. 87. P. 3391–3395.
- 26. Regehr W.G. Participation of multiple calcium channel types in transmission at single climbing fiber to Purkinje cell synapses / W.G. Regehr, I.M. Mintz // Neuron. 1994. Vol. 12, №3. P. 605–613
- 27. Relation of [Ca2+] to dopamine release in striatal synaptosomes: role of Ca2+ channels / Carvalho C.M. [et al.] // Brain Research. 1995. Vol. 669, № 2. P. 234–244.
- 28. Rittenhouse A.R. Omega-conotoxin inhibits the acute activation of tyrosine hydroxylase and the stimulation of norepinephrine release by potassium depolarization of sympathetic nerve endings / A.R. Rittenhouse, R.E. Zigmond // Journal of Neurochemistry. − 1991. − Vol. 56, № 2. − P. 615–622.
- 29. Stuenkel E.L. Effects of membrane depolarization on intracellular calcium in single nerve terminals / E.L. Stuenkel // Brain Res. 1990. Vol. 529. P. 96–101.
- 30. Takahashi A. Change in K+ current of HeLa cells with progression of the cell cycle studied by patch-clamp technique / A. Takahashi, H. Yamaguchi, H. Miyamoto // American Journal of Physiology − 1993. − Vol. 265, № 2. − P. 328–336.
- 31. The naming of voltage-gated calcium channels / Birnbaumer L. [et al.] // Neuron. 1994. № 13. P. 505–506.
- 32. Turner T. J. Calcium channels coupled to glutamate release identified by omega Aga IVA / T. J. Turner, M. E. Adams, K. Dunlap // Science. 1992. Vol. 258. P. 310–313.
- 33. Wang X. Single channel recordings of N and L-type Ca2+ currents in rat neurohypophysial terminals / X. Wang, S.N. Treistman, J.R. Lemos // Journal Neurophysiology 1993. Vol. 70. P. 1617–1628.
- 34. White B.H. Identification of a vesicular pool of calcium channels in the bag cell neurons of Aplysia californica / B.H. White, L.K. Kaczmarek // Journal of Neuroscience. 1997. Vol. 17. P. 1582–1595.