УДК 616.12-008.46-036.12-07

Калинкина Т.В., Ларёва Н.В., Чистякова М.В., Емельянова О.Н.

ГЕНЕТИЧЕСКИЕ АСПЕКТЫ ДИСФУНКЦИИ ЭНДОТЕЛИЯ У БОЛЬНЫХ ГИПЕРТОНИЧЕСКОЙ БОЛЕЗНЬЮ

Федеральное государственное бюджетное образовательное учреждение высшего образования Читинская государственная медицинская академия Министерства здравоохранения Российской Федерации

Цель исследования: проанализировать распределения частот аллелей и генотипов: мутация EDN1 (Lys198Asn), ACE (AluIns/ DelI>D), мутация ангиотензиногена 1 в гене AGT :521 C>T (Thr 174 Met), мутация рецептора типа 1 ангиотензина-2 в гене AGTR1: A1166C; A>C, мутация -1 синтазы окиси азота 3 в гене NOS3 -786 T>C; (C786T) у больных гипертонической болезнью 1-2 стадии, в зависимости от наличия диастолической дисфункциии в контрольной группе.

Материалы и методы. Обследованы 54 больных (18 женщин и 36 мужчин) с гипертонической болезнью 1-2 стадии. Анализ генетического полиморфизма проводили методом полимеразной цепной реакции с анализом полиморфизма длин рестракционных фрагментов ДНК.

Результаты: в группе больных гипертонической болезнью в сочетании с диастолической дисфункцией, обнаружено увеличение частот аллеля AGT:521~C>T~(Thr~174~Met), (p=0,05). Также в группе пациентов гипертонической болезнью в сочетании с диастолической дисфункциейболее частое наблюдение генотипа AGTR1:~A1166CCCаллеля $(\chi^2=16,53;~p=0,0003,OR28,39)$. Выявлена связь между наличием диастолической дисфункции у больных гипертонической болезнью и полиморфизмами NOS3 -786 T>C; $(C786T), (\chi^2=12,53;~p=0,012,OR21,85)$.

Выводы. Данные неблагоприятные аллельные варианты приводят к развитию более выраженной гипертрофии миокарда и появлению диастолической дисфункции у данной категории больных.

Ключевые слова: гипертоническая болезнь, полиморфизм генов, дисфункция эндотелия.

Kalinkina, T. V., Lareva N. In. Chistyakov M. V., Emelyanova O. N. GENETIC ASPECTS OF ENDOTHELIUM DYSFUNCTION IN HYPERTENSIVE PATIENTS Chita State Medical Academy, Chita, Russia

Summary The aim of the study was to analyze the frequency distribution of alleles and genotypes: mutation EDN1 (Lys198Asn), ACE (Alu Ins/ Del, I>D), the mutation angiotenzinoguen 1 in the gene AGT:521 C>T (Thr 174 Met) mutation of the receptor type 1 angiotensin-2 in the gene AGTR1: A1166C; A>C, mutation-1 nitric oxide synthase 3 gene NOS3 -786 T>C; (C786T) in patients with essential hypertension stage 1-2, depending on the presence of diastolic dysfunction and in the control group.

Materials and methods. 54 patients (18 women and 36 men) with essential hypertension stage 1-2were examined. Analysis of genetic polymorphisms was performed by polymerase chain reaction analysis of the length polymorphism restriktionen DNA fragments.

Results. In the group of patients with essential hypertension in combination with diastolic dysfunction, was detected an increase in frequency of allele AGT:521 C>T (Thr 174 Met), (p=0.05). Also in the group of patients with essential hypertension in combination with diastolic dysfunction is more frequent observation of the genotype of AGTR1: A1166C CC allele (χ 2= 16,53; p=0,0003,OR 28,39). Correlation between the presence of diastolic dysfunction in patients with essential hypertension and the polymorphisms of the NOS3 -786 T>C; (C786T), (χ 2= 12,53; p=0.012,OR 21,85).

Conclusions. Data adverse allelic variants lead to the development of more severe myocardial hypertrophy and the appearance of diastolic dysfunction in these patients.

Key words: hypertension, gene polymorphism, endothelial dysfunction.

При анализе особенностей течения и прогрессирования хронической сердечной недостаточности (ХСН) усиливается интерес к изучению диастолической функции левого желудочка, изменения которой являются, по мнению отдельных авторов, наиболее ранними [1]. Обсуждаются вопросы о различном «вкладе» систолической и диастолической дисфункции в патогенез ХСН [2], а также о систоло-диастолических взаимоотношениях на фоне активации важнейших нейрогуморальных систем [4]. С физиологической точки зрения, быстрое и пол-

ное расслабление является важным условием для адаптации сердечного выброса к изменению преднагрузки [3]. Поэтому ранняя диагностика диастолической дисфункции будет способствовать выявлению группы пациентов, у которых наиболее велика вероятность последующего развития систолической сердечной недостаточности. Данные многочисленных исследований указывают на ключевую роль ренин-ангиогензин-альдостероновой системы (РААС) в развитии процессов сердечно-сосудистого ремоделирования при гипертонической болезни (ГБ). Вместе с тем, появляется всё больше данных о роли синтазы оксида азота, который в настоящее время рассматривают как антагонист ангиотензина II[5]. Имеются сообщения о значении системы оксида азота в нарушении функции эндотелия, тогда как роль оксида в ремоделировании сердца и сосудов при ГБ практически не изучена.

Цель исследования: изучить полиморфизмы генов: мутацию EDN1 (Lys198Asn), ACE (AluIns/ DelI>D), мутацию ангиотензиногена 1 в гене AGT :521 C>T (Thr 174 Met), мутацию рецептора типа 1 ангиотензина-2 в гене AGTR1: A1166C; A>C, мутацию -1 синтазы окиси азота 3 в гене NOS3 -786 T>C; (C786T) у больных гипертонической болезнью 1-2 стадии, в зависимости от наличия диастолической дисфункции.

Материалы и методы. Клиническая характеристика больных. Обследованы 54 больных (18 женщин и 36 мужчин) с гипертонической болезнью 1-2 стадии, без признаков систолической дисфункции, наблюдающихся в кардиологическом отделении Дорожной клинической больницы ст. Чита II. Средний возраст больных составил 42±9,4 года. Диагноз верифицировался на основании тщательного анализа клинических данных, а также клинико-инструментальных исследований, включавших суточное мониторирование артериального давления (СМАД), эхокардиографию, ЭКГ по общепринятым методикам. Исследуемые были разделены на 2 группы в зависимости от наличия диастолической дисфункции (ДД): с нормальной диастолой левого желудочка (23 пациента, 43%) и с диастолической дисфункцией ЛЖ (31 больной, 57%). В контрольную группу вошли 35 здоровых людей (12 женщин и 23 мужчины, средний возраст 38±5,4 год) без признаков сердечно-сосудистых и других хронических заболеваний.

Материалом для молекулярно-генетического исследования послужили 89 образцов ДНК. Анализ генетического полиморфизма проводили методом полимеразной цепной реакции с анализом полиморфизма длин рестракционных фрагментов ДНК. В работе использованы стандартные наборы праймеров НПФ «Литех» — «SNP-экспресс». Визуализация продуктов амплификации выполнена с помощью электрофореза в 3% агарозном геле с добавлением бромида этидия.

Статистическая обработка данных проводилась с помощью пакета программ "STATISTICA 6.0" (StatSoft, USA). "Microsoft Office Exell 2010 for Windows 7". Соответствие наблюдаемого распределения количественных величин нормальному закону распределения оценивали с использованием критерия Шапиро-Уилка. Все количественные признаки в нашем исследовании были распределены ненормально, поэтому при сравнении показателей использовался критерий Манна-Уитни. При парном сравнении частот генотипов и аллелей в исследуемых группах и контроле использовался критерий Фишера. Статистически значимыми считали различия при р <0,05.

Результаты. При анализе клинических данных и параметров ЭхоКГ были выявлены следующие закономерности (табл. 1).

Таблица 1 Параметры кардиогемодинамики у больных гипертонической болезнью

Параметр	1-я группа без ДД	2-я группа с ДД	3-я группа (контроль)	p
Длительность АГ,	2,0[1,1; 4,8]*	5,0[3,0;5,0]*	-	<0,05
годы				
Курение, годы	12,0[0,0; 20,0]*	0,5[0,0;0,8]*	-	<0,05
ИМТ, кг/см ²	30,0[24,0;32,0]*	31,5 [30,0;33,0]*	21,2[19,7;23,6]*	₂₋₃ < 0,05
ИММЛЖ, Γ/M^2	95,1[88,5;107,2]*	107,3[73,5;109,8]*	59,1[56,3;63,7]*	1-3,2-3 < 0,05

КДР, мм	50,0[47,0;52,0]*	45,0[41,1; 48,0]*	39,5[37,5; 40,0]*	_{2-3, 1-3, 2-3} <0,05
КДО, мм ³	81,1[65,9;97,3]*	107,3[98,8;129,5]*		_{2-3, 1-3, 2-3} <0,05
Минутный объем,	4,8[4,3;6,8]*	5,3[4,7;7,1]*	6,1[5,9;6,2]*	>0,05
мл∖мин				
ЗСЛЖ, мм	10,5[9,8;11,1]*	10,7[10,0;12,0]*	7,4[7,1;7,7]*	_{1-3, 2-3} <0,05
ОТЗЛЖ	0,3 [0,2;0,3]*	0,3 [0,3;0,4]*	0,2 [0,1;0,2]*	_{1-2, 1-3} <0,05
Е∖А, мс	1,3 [1,2;1,4]*	0,8 [0,7;0,9]*	1,8 [1,4;2,7]*	1-2, 1-3 < 0,05
Р ср ЛА, мм.рт.ст	14,9[13,1; 4,8]*	15,7[10,7;19,0]*	9,4[8,0;11,6]*	_{1-3, 2-3} < 0,05

Примечание: *-данные представлены в виде медианы (25-й персентиль, 75-й персентиль), ИМТ - индекс массы тела, ИММЛЖ - индекс массы миокарда левого желудочка, КДР - конечный диастолический размер, КДО - конечный диастолический объем, ЗСЛЖ - задняя стенка левого желудочка, ОТЗЛЖ - относительная толщина задней стенки левого желудочка, Р ср ЛА - среднее давление в легочной артерии.

Оценка морфо-функциональных параметров сердца у больных гипертонической болезнью и в группе контроля представлены в табл. 1. Больные ГБ не различались по возрасту и полу. В группе с диастолической дисфункцией отмечалось увеличение конечного диастолического объема по сравнению с группой пациентов без ДД и с контрольной группой. Кроме того, наблюдалось уменьшение конечного диастолического размера левого желудочка и увеличение индекса массы миокарда во 2 группе наблюдения. В то же время размер задней стенки левого желудочка и относительная толщина задней стенки левого желудочка в группах больных не отличались.

Для изучения влияния генетического полиморфизма на морфофункциональные параметры сердца, больные ГБ вначале были разделены на группы в зависимости от варианта аллелей и/или генотипов полиморфизмов PAAC. Однако при анализе полученных групп значимые ассоциации не выявлены, что заставило нас использовать другой подход.

В проведенных ранее исследованиях было установлено, что ряд генотипов РААС можно считать неблагоприятными, поскольку они сопряжены с развитием выраженной гипертрофии миокарда. К ним были отнесены мутация АСЕ (AluIns/ DelI>D), мутация ангиотензиногена 1 в гене AGT:521 C>T (Thr 174 Met), мутация рецептора типа 1 ангиотензина-2 в гене AGTR1: A1166C; A>C[2,3]. Основываясь на результатах этих исследований, мы разделили больных в зависимости от наличия ДД, т.к. показано, что развитие гипертрофии миокарда сопровождается нарушением диастолы левого желудочка [5].

Таблица 2 Распределение аллелей и генотипов полиморфизмов РААС и синтазы азота у больных гипертонической болезнью.

Аллель/генотип	1-я группа	2-я группа с ДД	2-я группа с ДД 3-я группа	
	без ДД		(контроль)	
AGT:521 C>T	16%	29%	6%	_{2-3, 1-3,2-3} <0,05
(Thr 174 Met)				
ACE	48%	57%	4%	_{2-3, 1-3,2-3} >0,05
(Alu Ins/Del I>D)				
AGTR1: A1166C;	52%	30%	21%	2-3, 1-3,2-3 < 0,05
A>C				
NOS3-786 T>C;	61%	83%	18%	2-3, 1-3,2-3<0,05
(C786T)				

Были проанализированы распределения частот аллелей и генотипов: EDN1 (Lys198Asn), ACE (AluIns/ DelI>D), ангиотензиногена 1 в гене AGT:521 C>T (Thr 174 Met), рецептора типа 1 ангиотензина-2 в гене AGTR1: A1166C; A>C, синтазы окиси азота 3 в гене NOS3-786 T>C; (C786T) у больных гипертонической болезнью 1-2 стадии в контрольной группе. Распределение генотипов в контрольной группе проверяли на соответствие равнове-

сию Харди-Вайнберга. Наблюдаемые частоты генов в контрольной группе полностью соответствовали ожидаемым, рассчитанным по уравнению Харди-Вайнберга (p=0,085).

В группе больных гипертонической болезнью в сочетании с диастолической дисфункцией, обнаружено увеличение частот аллеля AGT:521 C>T (Thr 174 Met), (p=0,04). В то же время, в группе без ДД отмечалось увеличение частоты аллелей AGTR1: A1166C; A>C. Что может свидетельствовать о наибольшей значимости для развития диастолической дисфункции у больных с гипертонической болезнью носительства данной мутации.

Также в нашем исследовании отмечено увеличение частоты аллелей синтазы окиси азота 3 в гене NOS3 -786 T>C; (С786Т) у больных гипертонической болезнью при наличии диастолической дисфункции.

Таблица 3 Распределение аллелей изучаемых полиморфизмов у больных гипертонической болезнью

Полиморфизм	Аллели	1-я группа	2-я группа с	χ^2	р	OR	95% Cl
+ GE	D /D	без ДД	ДД	1.0	0.1	6.20	2.25.12.12
ACE	D/D	0,60	0,51	1,3	0,1	6,39	3,37-12,13
(Alu Ins/Del	I/D	0,28	0,23			0,32	0,17-0,60
I>D)	I/I	0,12	0,26			0,43	0,23-0,80
AGT:521 C>T	T/T	-	-	8,51	0,39	11,0	0,02-50,89
(Thr 174 Met)	T/C	0,06	0,30			6,71	2,65-17,01
	C/C	0,94	0,70			0,15	0,06-0,38
NOS3 -786	T/T	0,18	0,10	12,53	0,012	0,51	0,22-1,16
T>C	T/C	0,56	0,40			0,52	0,30-0,92
	C/C	0,26	0,50			21,85	21,57-35,16
AGTR1:	A/A	0,70	0,50	16,27	0,0003	0,43	0,24-0,77
A1166C; A>C	A/C	0,30	0,38			1,43	0,79-2,58
	C/C	-	0,12			28,39	1,66-48,4

В таблице 3 представлены результаты анализа распределения аллелей изучаемого нами полиморфизма генов у наблюдаемых субъектов. Анализ ассоциации носительства отдельных аллелей полиморфизмов генов ACE (AluIns/DelI>D), AGT:521 C>T (Thr 174 Met) в группах сравнения больных гипертонической болезнью показал отсутствие значимых отличий по данным показателям. Однако, в группе пациентов гипертонической болезнью в сочетании с диастолической дисфункцией более частое наблюдение генотипа AGTR1: A1166CCC аллеля (χ^2 = 16,27; p=0,0003,OR28,39) и генотипа NOS3 -786 T>C CC аллеля (χ^2 = 12,53; p=0,012, OR21,85).

Выводы. Выявлена связь между наличием диастолической дисфункции у больных гипертонической болезнью и полиморфизмами AGT:521 C>T (Thr 174 Met) и NOS3 -786 T>C; (C786T). Данные неблагоприятные аллельные варианты приводят к развитию более выраженной гипертрофии миокарда и появлению диастолической дисфункции у данной категории больных.

Литература:

- 1. Kattel S., Memon S., Saito K., Narula J., Saito Y. An effect of left ventricular hypertrophy on mild-to-moderate left ventricular diastolic dysfunction. Hellenic J Cardiol. 2016 Mar-Apr;57(2):92-8. doi: 10.1016/j.hjc.2016.03.004.
- 2. Карасева Н.В., Гончарова Е.В. Показатели диастолической функции миокарда у больных с синдромом обструктивного апноэ сна. Сибирский медицинский журнал. 2016. 145 (2). 12-15.
- 3. Шетер Н.М., Омельяненко М.Г., Плеханов В.Г., Святова Н.Д., Обжерина С.В. Влияние коронарного стентирования на диастолическую дисфункцию левого желудочка у боль-

- ных со стабильной стенокардией. Медународный журнал интервенционной кардиологии. 2011. 24. 130-131.
- 4. Кох. Н.В., Слепухина А.А., Лифшиц Г.И. Артериальная гипертония: молекулярногенетические и фармакологические подходы. Фармакогенетика и фармакогеномика. 2015. 2. 4-8.
- 5. Пахомя Н.С., Урясьев О.М. Полиморфизм некоторых генов-кандидатов сердечнососудистых заболеваний у больных бронхиальной астмой с сопутствующей гипертонической болезнью. Земский врач. 2015. 4. 24-29.

References:

- 1. Kattel S., Memon S., Saito K., Narula J., Saito Y. An effect of left ventricular hypertrophy on mild-to-moderate left ventricular diastolic dysfunction. Hellenic J Cardiol. 2016 Mar-Apr;57(2):92-8. doi: 10.1016/j.hjc.2016.03.004.
- 2. Karaseva N.V., Goncharova E.V. Diastolic function of the myocardium in patients with obstructive sleep apnea syndrome. Sibirskiymeditsinskiyzhurnal. 2016. 145 (2). 12-15.in Russian.
- 3. Sheter N.M., Omel'yanenko M.G., Plekhanov V.G., Svyatova N.D., Obzherina S.V. Effect of coronary stenting on diastolic dysfunction of the left ventricle in patients with stable angina. Medunarodnyyzhurnalinterventsionnoykardiologii. 2011. 24. 130-131.in Russian.
- 4. Kokh. N.V., Slepukhina A.A., Lifshits G.I. Arterial hypertension: molecular genetic and pharmacological approaches. Farmakogenetika I farmakogenomika. 2015. 2. 4-8.in Russian.
- 5. Pakhomya N.S., Uryas'ev O.M. Polymorphism of some candidate genes of cardiovascular diseases in patients with bronchial asthma with concomitant hypertensive disease. Zemskiyvrach. 2015. 4. 24-29.in Russian.